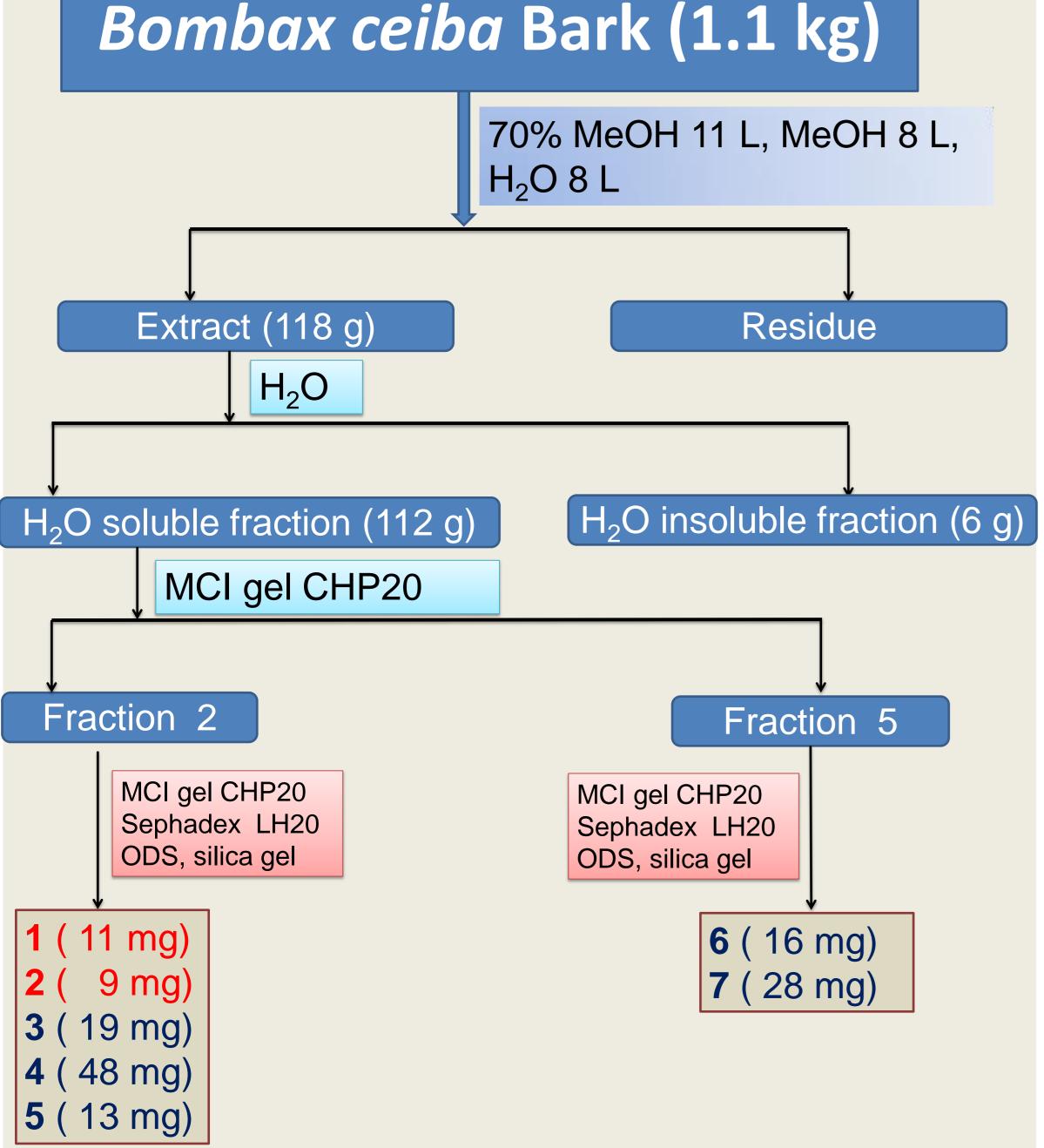
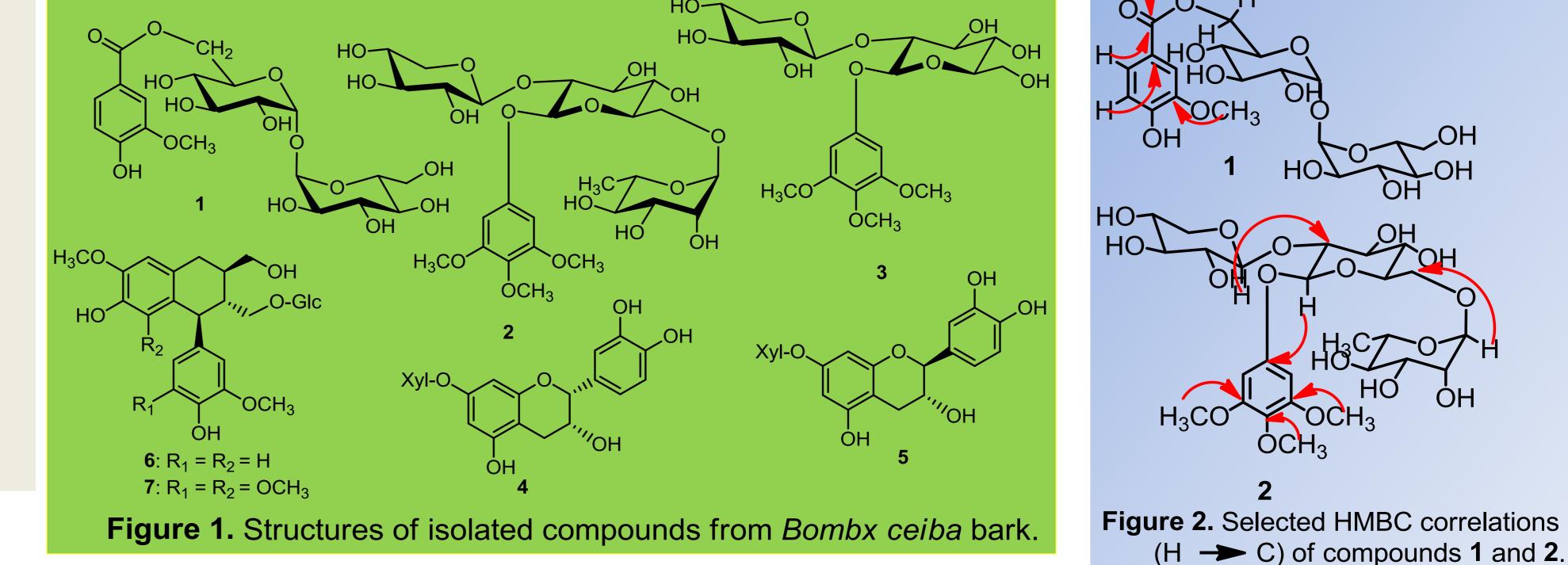
New Aromatic Compounds from the Stem Bark of Bombax ceiba **2P-56** ○ Khem Raj Joshi,^{1,2} Hari Prasad Devkota,¹ 矢原 正治¹ (¹熊本大院薬, ²Pokhara University, Nepal)

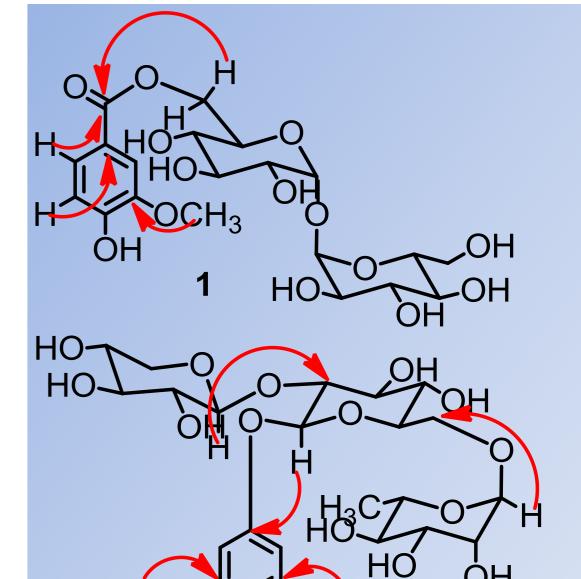
Introduction

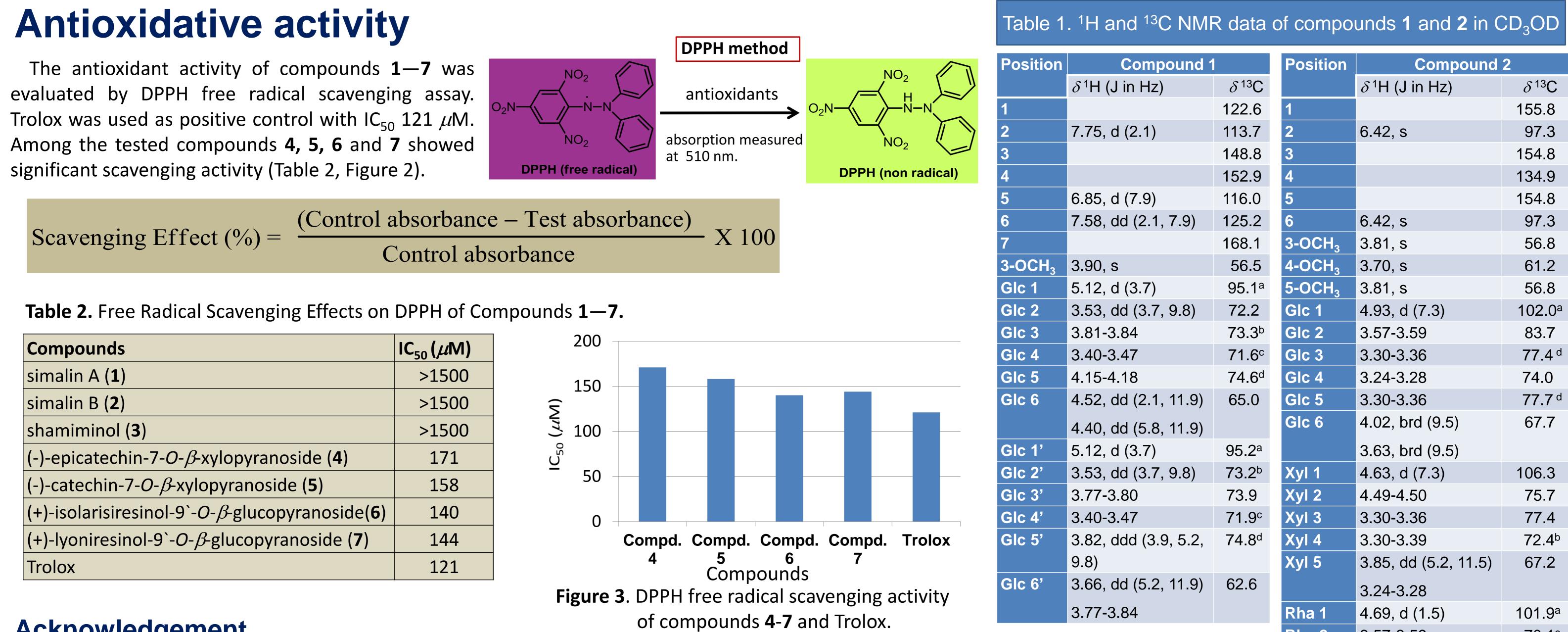

Bombax ceiba L. (Syn: Bombax malabaricum DC.), (Family: Bombacaceae), is a deciduous tree about 40 m tall. It is locally called as "Simal" in Nepal and distributed throughout Nepal, India, West China and Malaysia between 22-900 m.

Traditionally in Nepal, barks are used in wound healing. Gum from bark is used as remedy for diarrhea, dysentery, influenza, blood vomiting and menorrhagia.

We have previously reported the phenolic compounds from the flowers of this plant.^{1,2)} In present, we report the constituents from the bark. The shade dried stem bark of B. ceiba were extracted successively with 70% MeOH, MeOH and water. The combined extract was then subjected to repeated column chromatography on MCI gel CHP20P, ODS, Sephadex LH20 and silica gel to isolate compounds **1-7**.


Extraction and Isolation




Results and Discussion

The structures of two new aromatic compounds; simalin A (1) and simalin B (2) together with five known compounds; shamiminol (3), (-)-epicatechin-7-O- β -xylopyranoside (4), (-)-catechin-7-O- β -xylopyranoside (5), (+)-isolarisiresinol-9'-O- β -glucopyranoside (6) and (+)-lyoniresinol-9'-O- β -glucopyranoside (7) were elucidated on the basis of chemical and spectroscopic methods. Compounds 6 and 7 were isolated for the first time from *B. ceiba*. Compounds 4, 5, 6 and 7 showed potent antioxidant activity in the 1,1-diphenyl-2picrylhydrazyl (DPPH) radical scavenging test.

Simalin A (1): Colorless gum; $[\alpha]_{D}^{20}$ +80.4° (c 0.61, MeOH); HR-FAB-MS (positive mode) [M+Na]⁺ at 515.1380 (Calcd. for C₂₀H₂₈O₁₄ Na, 515.1377). Simalin B (2): Colorless gum; $[\alpha]_{D}^{20}$ -47.1° (c 0.81, MeOH); HR-FAB-MS (positive mode) peak of [M+Na]⁺ at 647.2181 (Calcd. for C₂₆H₄₀O₁₇Na, 647.2163).

compounds	$\Gamma_{50}(\mu V)$
simalin A (1)	>1500
simalin B (2)	>1500
shamiminol (3)	>1500
(-)-epicatechin-7- O - β -xylopyranoside (4)	171
(-)-catechin-7- <i>O</i> - β -xylopyranoside (5)	158
(+)-isolarisiresinol-9`- O - β -glucopyranoside(6)	140
(+)-lyoniresinol-9`- O - β -glucopyranoside (7)	144
Trolox	121

-				
	knov	MOD		nont
AL	NIIUN	VICU	IUCII	ΙΟΙΙ
_				-

The authors would like to thank the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan for the scholarship to Khem Raj Joshi and Hari Prasad Devkota.

References

1) Joshi, K.R., Devkota, H.P., Yahara, S., 2013. Chemical Analysis of Flowers of Bombax ceiba from Nepal. Natural Product Communication, 8, 583-584.

2) Joshi, K.R., Devkota, H.P., Yahara, S., 2012. . Chemical Analysis on Flowers of Bombax ceiba. The 59th Annual Meeting of the Japanese Society of Pharmacognosy, September 17-18, Chiba, Japan.

3.40-3.47	71.6 ^c	Glc 3	3.30-3.36	77.4 ^d
4.15-4.18	74.6 ^d	Glc 4	3.24-3.28	74.0
4.52, dd (2.1, 11.9)	65.0	Glc 5	3.30-3.36	77.7 ^d
4.40, dd (5.8, 11.9)		GIC 6	4.02, brd (9.5)	67.7
5.12, d (3.7)	95.2 ^a		3.63, brd (9.5)	
3.53, dd (3.7, 9.8)	73.2 ^b	Xyl 1	4.63, d (7.3)	106.3
3.77-3.80	73.9	Xyl 2	4.49-4.50	75.7
3.40-3.47	71.9 ^c	Xyl 3	3.30-3.36	77.4
3.82, ddd (3.9, 5.2,	74.8 ^d	Xyl 4	3.30-3.39	72.4 ^b
9.8)		Xyl 5	3.85, dd (5.2, 11.5)	67.2
3.66, dd (5.2, 11.9)	62.6		3.24-3.28	
3.77-3.84		Rha 1	4.69, d (1.5)	101.9 ^a
		Rha 2	3.57-3.59	70.1 ^c
		Rha 3	3.57-3.59	70.2 ^c
		Rha 4	3.30-3.39	72.1 ^b
		Rha 5	3.57-3.59	69.8
		Rha 6	1.19, d (6.4)	17.9

^{a, b, c, d} assignments may be reversed in the same column.